

BENCHMARKING SO3 REMOVAL – THE CLEANSTACK[®] PROCESS

Ms. Amy P Evans*

Director of Technology, Marsulex Environmental Technologies Inc. LLC, 200 North Seventh Street, Lebanon, PA 17046

Mr. Joseph A. Gresh

Senior Project Manager, Marsulex Environmental Technologies Inc. LLC, 200 North Seventh Street, Lebanon, PA 17046

Mr. William Birmingham

Director, Research & Development, ALSTOM Power Inc., Air Preheater Company, 3020 Truax Road, PO Box 372, Wellsville, NY 14895-0372

Dr. Steven A. Benson

Senior Research Manager, University of North Dakota Energy & Environmental Research Center, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202-9018

Dr. Donald P. McCollor

Technical Manager, University of North Dakota Energy & Environmental Research Center, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202-9018

ABSTRACT

This paper presents the results of a full-scale demonstration of a proprietary technology for the reduction of sulfur trioxide (SO₃) emissions from coal-fired power plant flue gases. The technology, trademarked CleanStack[®], was developed jointly by Marsulex Environmental Technologies, the Energy & Environmental Research Center, and ALSTOM Power, Inc., Air Preheater Company. Dominion Energy hosted the demonstration of the technology at its Chesterfield Unit 5, utilizing one of the 350-MWe unit's two air preheaters for the project. Higher SO₃ emissions, which result from the retrofit of selective catalytic reduction (SCR) technology to control NO_x emissions, are considered significant corrosion and opacity concerns for high-sulfur coal-fired boilers. The additional quantities of SO₃ generated by the oxidation catalysis of SCR elements on SO₂ have led to serious plume conditions from chimneys and higher rates of downstream corrosion. The CleanStack[®] technology utilizes the injection of ultrafine alkaline particles upstream of the boiler's air preheater to aid in the condensation and subsequent neutralization of SO₃. Collected SO₃ is absorbed by the alkaline particles and

disposed of with the fly ash constituents. Advanced-design air preheater heating elements that resist fouling and enable more effective cleaning, ensure the reliable operation of the air preheater under CleanStack[®] operation. In addition to solving a growing emission problem, the CleanStack[®] technology may enable certain plants to increase their boiler thermal efficiencies by as much as 1% due to the increased heat transfer taking place across the air preheater. This benefit also translates into lower corrosion rates of downstream ductwork and electrostatic precipitator components, as well as enabling owners to more seriously evaluate fabric filters for high-sulfur applications. Fabric filters may enhance the company's ability to comply with future fine particulate and mercury regulations. The paper presents the results of the full-scale demonstration program, including SO₃ reduction performance, air preheater operation, and the discussion of several collateral benefits such as those cited above.

INTRODUCTION

Emission reduction strategies implemented by electric utilities on coal-fired plants include installation of flue gas desulfurization (FGD) systems for SO₂ control and SCR technology for NO_x control to meet the specific reductions in SO₂ and NO_x emissions required by the 1990 Clean Air Act Amendments. These technologies result in the potential for emission of SO₃ and sulfuric acid aerosols that can result in increased stack opacity. The installation of FGD systems also allows the firing of high-sulfur fuels, which generate more SO₃ than do more expensive lowsulfur coals. While effective for SO₂ capture, wet FGD systems have been shown to have a minimal effect on removal of SO₃.

The use of SCR for NO_x control also may result in increased SO_3 concentrations in the flue gas as a result of catalytic oxidation of SO_2 by the SCR. This problem may be aggravated by ultrafine particles formed by the reaction of SO_3 with excess ammonia present from the SCR process, resulting in a highly visible "blue plume" emitted from the stack.

In the coal combustion process, SO_3 comprises approximately 0.7% of total sulfur emissions. Chemical equilibrium modeling shows essentially all the SO_3 is converted to gaseous H_2SO_4 at a flue gas temperature of 400°F (204°C). Below the sulfuric acid dew point temperature (260°– 300°F, 127°–149°C) when a sufficiently high SO_3 concentration and a low ash particle loading is present in the flue gas, homogeneous condensation can occur, producing a submicron acid fume which is very difficult to collect in a dry electrostatic precipitator (ESP) or wet scrubber. Emission of SO_3 and acid fume may result in increased opacity and a conspicuous blue stack plume.¹

The condensed sulfuric acid also has the potential to result in fouling and corrosion on surfaces in the air preheater, ductwork, and stack. Conventional wisdom dictates that flue gas exiting a regenerative air preheater should not fall below minimum temperatures dictated by the percentage of sulfur in the coal to avoid fouling and corrosion. However, local metal temperatures are always lower than the flue gas temperature, and the metal surface temperature at the cold end of an air preheater is typically below the acid dew point. Thus acid condensation is normally occurring at the cold end of an air preheater under typical operating conditions. Deliberate control of metal temperature gradients within the air preheater offers a potential method for enhanced SO₃ and acid capture.²

Dominion Generation has committed to upgrades to significantly reduce particulate and sulfur emissions at its Chesterfield facility. A wet FGD and fabric filter baghouse are to be in service on Unit 6 by June 2008. The wet FGD will make possible the burning of higher-sulfur coals. However, this entails the need to reduce SO₃ concentrations to less than a dew point temperature of 270° F to avoid back-end corrosion, damage to fabric filters, and visible stack emissions. The operating criteria for the SO₃ control technology imposed the requirements of having no negative effect on unit operations, such as increased air preheater pressure drop or accumulation of material in the ductwork, high levels of reliability, operability and maintainability, low operating cost, and a reasonable capital cost. CleanStack[®] meets these requirements. As a result, Dominion Generation entered into a full-scale plant demonstration of this technology. Other SO₃ abatement technologies considered were the use of fireside reagents, reagent-based post-combustion additives, and wet ESP technology; however, they did not appear to meet all of the desired performance and operating requirements.

The basis of the SO₃ reduction technology demonstrated at Chesterfield Unit 5 is to provide controlled condensation of SO₃ by injection of ultrafine particulate material immediately upstream of the air preheater. The particle concentration provides nucleation sites for heterogeneous condensation in preference to both homogeneous condensation and condensation on metal air preheater surfaces. The condensation process does not depend on the composition of the particles, but only on the particle-size distribution and particle concentration. For the testing, limestone was chosen so as to provide a degree of acid neutralization after condensation has occurred. The Energy & Environmental Research Center (EERC), along with Marsulex Environmental Technology and the ALSTOM Power Inc., Air Preheater Company, has been working to develop solutions to SO₃ emission problems in boilers. The goal of the Chesterfield testing was to demonstrate the effectiveness of the CleanStack[®] SO₃ control technology for removing SO₃ from flue gas as a function of limestone feed rate and flue gas SO₃ concentration.

EXPERIMENTAL

Field Testing

The site selected for the demonstration was Dominion Generation's Chesterfield Station. The Chesterfield Station consists of four tangentially fired units with a total electrical capacity of 1298 MW. The testing was performed on Unit 5 which is a nominal 350-MW unit firing 183,000 lb/hr of a bituminous coal The unit is a split-backpass design with SCRs for NO_x control and cold-side ESPs for particulate removal. Dominion had previously upgraded the air preheaters on Unit 5 to include the advanced-design heating elements which would minimize the fouling concerns with CleanStack[®]. Specific objectives were to determine the baseline SO₃ concentration at the air preheater inlet (SCR outlet), air preheater outlet, and ESP inlet; determine the particle-size distribution and feed rate of the limestone injection system using multicyclones; and determine SO₃ removal efficiency across the air heater and at the inlet to the ESP at different limestone injection rates. This testing was preformed during the summer of 2006.

A commercial SO₃ generator that the plant uses for ESP conditioning was used to catalytically generate an elevated SO₃ concentration that is anticipated to result from firing a higher-sulfur coal (~35 ppm SO₃) with an SCR installed. The SO₃ was injected into the flue gas at a location far enough upstream of the air heater to ensure uniform dispersion of the SO₃.

The control technology uses finely ground limestone injected immediately ahead of the air preheater as the SO_3 removal media. Limestone was injected upstream of one of the air preheaters and ESPs of Unit 5. Figure 1 shows the general locations for SO_3 and limestone injection and for sampling. Details of the limestone injection system are shown in Figure 2.

MET CleanStack[®] Technical Paper www.met.net Page: 4

Figure 1. Injection and sampling locations.

Figure 2. Equipment requirements for the limestone injection system.

Limestone is fed from the storage silo into an attritor mill followed by a classifier. The classifier recycles oversized material back to the attritor mill for regrinding while allowing the fine material (mean size approximately 3 μ m) to be pneumatically conveyed to the distribution manifolds and the injection lances located upstream of the APH inlet. A total of 12 limestone injection lances were used, providing a reasonably even distribution across the gas stream going into the air preheater.

 SO_3 sampling was performed at three locations: the inlet to the air preheater (after the SO_3 injection location), the exit of the air preheater and the inlet to the ESP. All SO_3 sampling was accomplished using the controlled condensation method. At each location, four ports were sampled across the duct for 1 hour each (two ports were sampled simultaneously) providing a 4-point traverse. The SO_3 concentration reported was an average across the four ports. The SO_3

concentration in the sample collected at each point was measured using ion chromatography. To compare the results from each of the sampling locations, the data were put on the same O_2 basis (3%, with the O_2 concentration at each sampling location measured using a portable O_2 analyzer).

The testing parameters are provided in Table 1. The plant process conditions for the tests are listed in Table 2. The plant operated at nearly full load and, in general, provided very steady operation during the tests.

Test	Limestone, lb/hr	Sulfur, lb/hr	Comments			
Т0	0	0	Baseline			
T1	500	90	Probe was hot (>600°F)			
T2	0	90	Probe was hot (>600°F)			
Т3	500	60				
T4	0	60	Tube leak in boiler occurred during testing			
T5	0	60				
T6	500	60				
T7	300	60	Boiler load was low			
Т8	500	60				
Т9	300	60				
T10	0	60				

Table 1. Testing Parameters.

Table 2. Process Conditions at Dominion's Chesterfield Plant During SO₃ Sampling.

Test	Baseline	T1	Т2	Т3	T4	T5	Т6	Т7	Т8	Т9	T10
Barometric Pressure, in. Hg	NA*	30.15	30.00	30.00	30.00	30.06	30.06	30.00	30.00	30.03	30.03
Boiler Load, MW	341	342	337	339	338	337	348	347	267	340	341
Stack Flow, scfm	769,900	778,900	766,200	759,800	766,600	773,000	770,000	645,500	766,700	775,900	782,500
Opacity, %	5.70	5.72	7.06	13.17	7.77	5.42	5.52	4.48	9.21	8.81	10.05
Air Heater Inlet, 🖪	682	680	675	673	674	671	672	644	673	672	671
Air Heater Outlet, 🖪	285	292	304	292	294	292	293	280	295	290	291
Air Heater ΔP , in. H_2O	5.28	5.42	5.12	5.20	5.25	5.24	5.34	3.68	5.21	5.20	5.22
Boiler O ₂ , %	3.0	3.1	2.7	2.6	2.9	2.8	2.8	3.4	2.5	2.9	3.2
NH₃ Feed Rate, lb/hr	173.9	171.0	133.9	131.7	128.9	158.5	161.6	138.2	132.9	150.2	159.7
SCR in NO _x , ppmv	241	239	195	193	188	198	202	237	190	209	224
SCR out NO _x , ppmv	30	30	29	30	29	29	30	30	30	30	30
Stack SO ₂ ppmv	681	639	625	640	639	649	659	640	670	629	633

.

* Not available.

 ∞

RESULTS AND DISCUSSION

The SO₃ levels in the flue gas measured during the tests are shown in Table 3. These results are presented on a constant O₂ basis (3%) so that the concentration at each of the three locations can be compared to determine the actual SO₃ removal that occurs as a result of the limestone injection. The results in Table 3 show differences in SO₃ concentration across the duct, especially at the air preheater inlet sampling location. In general, the concentrations at the C and D ports were higher than those measured at the A and B ports. This was found to be the result of an uneven distribution of SO₃ flows being injected into the duct. Variability in SO₃ levels were also observed at the air preheater outlet because of the rotation of the air preheater. Previous modeling results indicated that the temperature at various points in the air preheater rotation would have an effect on SO₃ concentration and removal.³ At the ESP inlet location, the SO₃ levels are more constant across the duct as the increased residence time allows better mixing of the gas. There is no explanation why the air preheater inlet location for Test T3 is so low compared to the other tests, since the feed rate of sulfur for the SO₃ generator for all the tests (T3–T10) was held constant at 60 lb/hr. The SO₃ level at the air preheater outlet location for test T3 is similar to the other tests where limestone was added.

······································								
Test	T3	T5	Т6	T8	Т9	T10		
Air Preheater Inlet								
А	13.1	14.1	19.2	21.0	19.6	24.8		
В	16.0	27.6	15.6	15.1	27.8	35.2		
С	14.1	32.1	48.5	61.7	61.8	70.5		
D	25.6	61.1	66.0	52.1	59.5	67.5		
Avg.	17.2	33.7	37.3	37.5	42.2	49.5		
		Air F	Preheater	Inlet				
А	18.2	32.8	5.9	8.3	22.3	13.2		
В	19.2	17.2	14.5	8.5	12.0	14.7		
С	8.1	13.4	21.6	16.8	7.8	46.5		
D	1.6	14.4	10.1	9.9	10.2	21.4		
Avg.	11.8	19.5	13.0	10.8	13.1	23.9		
ESP Inlet								
А	5.7	12.5	7.5	7.1	7.0	14.1		
В	6.5	13.2	10.2	5.5	7.3	16.8		
С	5.2	15.0	10.1	8.9	9.8	15.9		
D	5.2	16.7	12.2	3.4	11.0	14.1		
Avg.	5.7	14.4	10.0	6.1	8.8	15.2		

Table 3. Flue Gas SO ₃ Concentrations (3% O ₂ Bas	sis).
---	-------

A comparison of the tests with and without limestone injection is provided in Table 4. If the concentration of SO₃ for Test T3 was more in-line with the average SO₃ level, the removal for that test would be 85.4%. As stated earlier, Tables 3 and 4 provide the SO₃ on a 3% O₂ basis so that comparisons can be made across the different sample points and tests. However, the actual SO₃ emissions are the concentration of SO₃ in flue gas irrespective of the excess air. These results are shown in Table 5. There was a 49.3% reduction average in SO₃ (as measured at the ESP inlet location) as a result of limestone injection.

Test	AH inlet	AH Outlet	ESP inlet	Removal				
Without Limestone Injection								
T5	33.7	19.5	14.4	57.3				
T10	49.5	23.9	15.5	68.7				
Average	41.6	21.7	15.0	63				
With Limestone Injection								
Т3	17.2	11.8	5.7	66.8				
Т6	37.3	13.0	10.0	73.1				
Т8	37.5	10.8	6.1	83.7				
Т9	42.2	13.1	8.8	79.1				
Average	33.6	12.2	7.6	75.7				

Table 4. Comparison of Tests with and Without Limestone Addition.

From previous model predictions,³ the calculated SO₃ removal results for the currently fired coal with an assumed SO₃ concentration of 36 ppm is shown in Figure 3 in comparison with the measurements obtained during the test program. At the ESP exit, a substantial reduction in gas-phase SO₃ was predicted for the case with limestone injection (25% versus 55% of the starting concentration) with the difference condensed on particulate material. Although the limestone only increases the particle loading from 1.5% to 3.0% to 4.0%, the small particle size results in significant additional condensation. The test results are in good agreement with the model predictions.

Without Limestone Injection							
Port	T5	T10					
А	11.2	12.1					
В	11.6	14.2					
С	11.2	13.2					
D	12.2	12.8					
Avg	11.7	13.1					
With Limestone Injection							
	Т3	T6	T8	Т9			
А	5.0	6.3	7.3	6.1			
В	5.8	8.5	2.7	6.2			
С	4.5	7.7	5.6	8.6			
D	4.5	9.5	4.4	9.5			
Avg	4.9	8.0	5.0	7.6			

Figure 3. Comparison of test results with modeling predictions.

CONCLUSIONS

As part of upgrades to meet regulations for particulate and sulfur emissions at its Chesterfield facility, Dominion Generation is examining control technologies to reduce SO₃ concentrations to less than a dew point temperature of 270°F to avoid back-end corrosion, damage to fabric filters and visible stack emissions while having no negative effects on unit operations. As a result, Dominion Generation entered into a full-scale plant demonstration of the CleanStack[®] technology. Testing was preformed during the summer of 2006 to determine the baseline SO₃ concentration at the air preheater inlet (SCR outlet), air preheater outlet and ESP inlet and determine SO₃ removal efficiency across the air preheater and between the air preheater and the ESP as a function of limestone injection rates. The technology demonstrated a 49.3% average reduction in SO₃ (as measured at the ESP inlet location) as a result of CleanStack[®] limestone injection. The test results are in good agreement with previous model predictions.

REFERENCES

- 1. Laudal, D.L. *Evaluation of Aerosol Emissions Downstream of an Ammonia-Based SO*₂ *Scrubber*; Final Report for U.S. Department of Energy Cooperative Agreement No. DE-FC26-98FT40321; Energy & Environmental Research Center: Grand Forks, ND, April 2002.
- 2. Miller-Odenwald, D.J.; Farwick, H. The Air Preheater—A Component for Emission Reduction. *VGB Kraftwerkstechnick* **1995**, *75* (11), 866–873.
- 3. Hamel, B.; Rhodes, R.; Benson, S.A.; McCollor, D.P. The Role of the Combustion Air Preheater in an Effective Multipollutant Control Strategy. Presented at the DOE–EPRI–EPA–A&WMA Power Plant Air Pollution Control AMega@ Symposium, Washington, DC, May 19–22, 2003.